
ARTICLES
PUBLISHED ONLINE: 8 DECEMBER 2013 | DOI: 10.1038/NPHYS2815

Consistent thermostatistics forbids negative
absolute temperatures
Jörn Dunkel1* and Stefan Hilbert2

Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute
temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy
analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all
previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition
that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can
be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic
framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded
spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental
techniques.

Positivity of absolute temperature T , a key postulate of
thermodynamics1, has repeatedly been challenged both
theoretically2–4 and experimentally5–7. If indeed realizable,

negative temperature systems promise profound practical and
conceptual consequences. They might not only facilitate the
creation of hyper-efficient heat engines2–4 but could also help7 to
resolve the cosmological dark-energy puzzle8,9. Measurements of
negative absolute temperature were first reported in 1951 by Purcell
and Pound5 in seminal work on the population inversion in nuclear
spin systems. Five years later, Ramsay’s comprehensive theoretical
study2 clarified hypothetical ramifications of negative temperature
states, most notably the possibility to achieve Carnot efficiencies
η > 1 (refs 3,4). Recently, the first experimental realization of an
ultracold bosonic quantum gas7 with a bounded spectrum has
attracted considerable attention10 as another apparent example
system with T < 0, encouraging speculation that cold-atom gases
could serve as laboratory dark-energy analogues.

Here, we show that claims of negative absolute temperature
in spin systems and quantum gases are generally invalid, as they
arise from the use of a popular yet inconsistent microcanonical
entropy definition attributed to Boltzmann11. By means of rigorous
derivations12 and exactly solvable examples, we will demonstrate
that the Boltzmann entropy, despite being advocated in most
modern textbooks13, is incompatible with the differential structure
of thermostatistics, fails to give sensible predictions for analytically
tractable quantum and classical systems, and violates equipartition
in the classical limit. The general mathematical incompatibility
implies that it is logically inconsistent to insert negative Boltz-
mann ‘temperatures’ into standard thermodynamic relations, thus
explaining paradoxical (wrong) results for Carnot efficiencies and
other observables. The deficiencies of the Boltzmann entropy can
be overcome by adopting a self-consistent entropy concept that
was derived by Gibbs more than 100 years ago14, but has been
mostly forgotten ever since. Unlike the Boltzmann entropy, Gibbs’
entropy fulfils the fundamental thermostatistical relations and
produces sensible predictions for heat capacities and other ther-
modynamic observables in all exactly computable test cases. The

1Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue E17-412, Cambridge, Massachusetts 02139-4307, USA,
2Max Planck Institute for Astrophysics, Karl-Schwarzschild-Straße 1, Garching 85748, Germany. *e-mail: dunkel@math.mit.edu

Gibbs formalism yields strictly non-negative absolute temperatures
even for quantum systems with a bounded spectrum, thereby
invalidating all previous negative temperature claims.

Negative absolute temperatures?
The seemingly plausible standard argument in favour of negative
absolute temperatures goes as follows10: assume a suitably designed
many-particle quantum system with a bounded spectrum5,7 can
be driven to a stable state of population inversion, so that most
particles occupy high-energy one-particle levels. In this case, the
one-particle energy distributionwill be an increasing function of the
one-particle energy ε. To fit7,10 such a distributionwith a Boltzmann
factor ∝exp(−βε), β must be negative, implying a negative Boltz-
mann ‘temperature’ TB = (kBβ)−1 < 0. Although this reasoning
may indeed seem straightforward, the arguments below clarify that
TB is, in general, not the absolute thermodynamic temperature T ,
unless one is willing to abandon the mathematical consistency of
thermostatistics. We shall prove that the parameter TB = (kBβ)−1,
as determined by Purcell and Pound5 and more recently also in
ref. 7 is, in fact, a function of both temperature T and heat capacity
C . This function TB(T ,C) can indeed become negative, whereas the
actual thermodynamic temperatureT always remains positive.

Entropies of closed systems
When interpreting thermodynamic data of newmany-body states7,
one of the first questions to be addressed is the choice of the
appropriate thermostatistical ensemble15,16. Equivalence of the
microcanonical and other statistical ensembles cannot—in fact,
must not—be taken for granted for systems that are characterized
by a non-monotonic2,4,7 density of states (DOS) or that can undergo
phase-transitions due to attractive interactions17—gravity being a
prominent example18. Population-inverted systems are generally
thermodynamically unstable when coupled to a (non-population-
inverted) heat bath and, hence, must be prepared in isolation5–7.
In ultracold quantum gases7 that have been isolated from the
environment to suppress decoherence, both particle number
and energy are in good approximation conserved. Therefore,
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barring other physical or topological constraints, any ab initio
thermostatistical treatment should start from the microcanonical
ensemble. We will first prove that only the Gibbs entropy provides
a consistent thermostatistical model for the microcanonical density
operator. Instructive examples will be discussed subsequently.

We consider a (quantum or classical) system with microscopic
variables ξ governed by the Hamiltonian H = H (ξ ;V ,A),
where V denotes volume and A = (A1, ...) summarizes other
external parameters. If the dynamics conserves the energy E , all
thermostatistical information about the system is contained in the
microcanonical density operator

ρ(ξ ;E,V ,A)=
δ(E−H )

ω
(1)

which is normalized by the DOS

ω(E,V ,A)=Tr[δ(E−H )]

When considering quantum systems, we assume, as usual,
that equation (1) has a well-defined operator interpretation, for
example, as a limit of an operator series. For classical systems, the
trace simply becomes a phase-space integral over ξ . The average of
some quantity F with respect to ρ is denoted by 〈F〉≡Tr[Fρ], and
we define the integrated DOS

Ω(E,V ,A)=Tr[Θ(E−H )]

which is related to the DOSω by differentiation,

ω=
∂Ω

∂E
≡Ω ′

Intuitively, for a quantum system with spectrum {En}, the quantity
Ω(En,V ,A) counts the number of eigenstates with energy less
than or equal to En.

Given the microcanonical density operator from equation (1),
one can find two competing definitions for the microcanonical
entropy in the literature12–14,17,19,20:

SB(E,V ,A)= kB ln(εω),

SG(E,V ,A)= kB ln(Ω)

where ε is a constant with dimensions of energy, required to
make the argument of the logarithm dimensionless. The Boltzmann
entropy SB is advocated by most modern textbooks13 and used
by most authors nowadays2,4,5,7. The second candidate SG is often
attributed toHertz21 butwas in fact already derived byGibbs in 1902
(ref. 14, Chapter XIV). For this reason, we shall refer to SG as Gibbs
entropy.Hertz proved in 1910 that SG is an adiabatic invariant21. His
work was highly commended by Planck22 and Einstein, who closes
his comment23 by stating that he would not have written some of his
papers had he been aware of Gibbs’ comprehensive treatise14.

Thermostatistical consistency conditions
The entropy S constitutes the fundamental thermodynamic
potential of the microcanonical ensemble. Given S, secondary
thermodynamic observables, such as temperature T or pressure p,
are obtained by differentiation with respect to the natural control
variables {E,V ,A}. Denoting partial derivatives with respect to
E by a prime, the two formal temperatures associated with SB
and SG are given by

TB(E,V ,A)=
(
∂SB
∂E

)−1
=

1
kB

ω

ω′
=

1
kB

Ω ′

Ω ′′
(2)

TG(E,V ,A)=
(
∂SG
∂E

)−1
=

1
kB

Ω

Ω ′
=

1
kB

Ω

ω
(3)

Note that TB becomes negative if ω′ < 0, that is, if the DOS is
non-monotic, whereas TG is always non-negative, because Ω is
a monotonic function of E . The question as to whether TB or
TG defines the thermodynamic absolute temperature T can be
decided unambiguously by considering the differential structure of
thermodynamics, which is encoded in the fundamental relation

dS =
(
∂S
∂E

)
dE+

(
∂S
∂V

)
dV +

∑
i

(
∂S
∂Ai

)
dAi

≡
1
T
dE+

p
T
dV +

∑
i

ai
T
dAi (4)

All consistent thermostatistical models, corresponding to pairs
(ρ,S) where ρ is a density operator and S an entropy potential, must
satisfy equation (4). If one abandons this requirement, any relation
to thermodynamics is lost.

Equation (4) imposes stringent constraints on possible entropy
candidates. For example, for an adiabatic (that is, isentropic)
volume change with dS= 0 and other parameters fixed (dAi = 0),
one finds the consistency condition

p=T
(
∂S
∂V

)
=−

(
∂E
∂V

)
=−

〈
∂H
∂V

〉
(5)

More generally, for any adiabatic variation of some parameter
Aµ ∈ {V ,Ai} of the Hamiltonian H , one must have (Supple-
mentary Information)

T
(
∂S
∂Aµ

)
E

=−

(
∂E
∂Aµ

)
S

=−

〈
∂H
∂Aµ

〉
(6)

where T ≡ (∂S/∂E)−1 and subscripts S and E indicate quantities
kept constant, respectively. The first equality in equation (6) follows
directly from equation (4). The second equality demands correct
identification of thermodynamic quantities with statistical expec-
tation values, guaranteeing for example that mechanically mea-
sured gas pressure agrees with abstract thermodynamic pressure.
The conditions in equation (6) not only ensure that the thermo-
dynamic potential S fulfils the fundamental differential relation
(equation (4)). For a given density operator ρ, they can be used to
separate consistent entropy definitions from inconsistent ones.

Using only the properties of themicrocanonical density operator
as defined in equation (1), one finds24

TG

(
∂SG
∂Aµ

)
=

1
ω

∂

∂Aµ
Tr
[
Θ(E−H )

]
=−

1
ω
Tr
[
−

∂

∂Aµ
Θ(E−H )

]
= −Tr

[(
∂H
∂Aµ

)
δ(E−H )

ω

]
=−

〈
∂H
∂Aµ

〉
(7)

This proves that the pair (ρ,SG) fulfils equation (6) and, hence,
constitutes a consistent thermostatistical model for the mi-
crocanonical density operator ρ. Moreover, because generally
TB(∂SB/∂Aµ) 6=TG(∂SG/∂Aµ), it is a trivial corollary that the Boltz-
mann entropy SB violates equation (6) and hence cannot be a
thermodynamic entropy, implying that it is inconsistent to insert
the Boltzmann ‘temperature’ TB into equations of state or efficiency
formulae that assume validity of the fundamental thermodynamic
relations (equation (4)).

Similarly to equation (7), it is straightforward to show that, for
standard classical Hamiltonian systems with confined trajectories
and a finite ground-state energy, only the Gibbs temperature TG
satisfies themathematically rigorous equipartition theorem12〈

ξi
∂H
∂ξj

〉
≡Tr

[(
ξi
∂H
∂ξj

)
ρ

]
= kBTG δij (8)
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for all canonical coordinates ξ = (ξ1,...). The key steps of the proof
are identical to those in equation (7); that is, one merely exploits
the chain rule relation ∂Θ(E−H )/∂λ=−(∂H/∂λ)δ(E−H ), which
holds for any variable λ in the Hamiltonian H . Equation (8) is
essentially a phase-space version of Stokes’ theorem12, relating
a surface (flux) integral on the energy shell to the enclosed
phase-space volume.

Small systems
Differences between SB and SG are negligible for most macroscopic
systems with monotonic DOS ω, but can be significant for small
systems12. This can already be seen for a classical ideal gas in d-space
dimensions, where17

Ω(E,V )=αEdN/2V N , α=
(2πm)dN/2

N !hd0(dN/2+1)

for N identical particles of mass m and Planck constant h.
From this, one finds that only the Gibbs temperature yields
exact equipartition

E =
(
dN
2
−1
)
kBTB, (9)

E =
dN
2

kBTG (10)

Clearly, equation (9) yields paradoxical results for dN = 1, where it
predicts negative temperature TB< 0 and heat capacity CB< 0, and
also for dN = 2, where the temperature TB must be infinite. This is
a manifestation of the fact that SB is not an exact thermodynamic
entropy. In contrast, the Gibbs entropy SG produces the reasonable
equation (10), which is a special case of the more general
equipartition theorem (equation (8)).

That SG also is themore appropriate choice for isolated quantum
systems, as relevant to the interpretation of the experiments
by Purcell and Pound5 and Braun et al.7, can be readily
illustrated by two other basic examples: for a simple harmonic
oscillator with spectrum

En= h̄ν
(
n+

1
2

)
, n= 0,1,...,∞

we find by inversion and analytic interpolation
Ω = 1+ n = 1/2+ E/(h̄ν) and, hence, from the Gibbs entropy
SG= kB lnΩ the caloric equation of state

kBTG=
h̄ν
2
+E

which, when combined with the quantum virial theorem, yields an
equipartition-type statement for this particular example (equipar-
tition is not a generic feature of quantum systems). Furthermore,
T =TG gives a sensible prediction for the heat capacity,

C =
(
∂T
∂E

)−1
= kB

accounting for the fact that even a single oscillator can serve as
minimal quantum heat reservoir. More precisely, the energy of a
quantum oscillator can be changed by performing work through
a variation of its frequency ν, or by injecting or removing energy
quanta, corresponding to heat transfer in the thermodynamic
picture. The Gibbs entropy SG quantifies these processes in a
sensible manner. In contrast, the Boltzmann entropy SB= kB ln(εω)
with ω = (h̄ν)−1 assigns the same constant entropy to all energy
states, yielding the nonsensical result TB = ∞ for all energy
eigenvalues En and making it impossible to compute the heat

capacity of the oscillator. The failure of the Boltzmann entropy SB
for this basic example should raise doubts about its applicability to
more complex quantum systems7.

That SB violates fundamental thermodynamic relations not only
for classical but also for quantum systems can be further illustrated
by considering a quantum particle in a one-dimensional infinite
square-well of length L, for which the spectral formula

En= an2/L2, a= h̄2π 2/(2m), n= 1,2,...,∞ (11)

implies Ω = n = L
√
E/a. In this case, the Gibbs entropy

SG = kB lnΩ gives

kBTG= 2E, pG≡TG

(
∂SG
∂L

)
=

2E
L

as well as the heat capacity C = kB/2, in agreement with
physical intuition. In particular, the pressure equation is consistent
with condition (equation (5)), as can be seen by differentiating
equation (11) with respect to the volume L,

p≡−
∂E
∂L
=

2E
L
= pG

That is, pG coincides with the mechanical pressure as obtained
from kinetic theory19.

In contrast, we find from SB= kB ln(εω) with ω= L/(2
√
Ea) for

the Boltzmann temperature

kBTB=−2E < 0

Although this result in itself seems questionable, unless one believes
that a quantum particle in a one-dimensional box is a dark-energy
candidate, it also implies a violation of equation (5), because

pB≡TB

(
∂SB
∂L

)
=−

2E
L
6= p

This contradiction corroborates that SB cannot be the correct
entropy for quantum systems.

We still mention that one sometimes encounters the ad
hoc convention that, because the spectrum in equation (11) is
non-degenerate, the ‘thermodynamic’ entropy should be zero
for all states. However, such a postulate entails several other
inconsistencies (Supplementary Information). Focusing on the
example at hand, the convention S = 0 would again imply the
nonsensical result T =∞, misrepresenting the physical fact that
also a single degree of freedom in a box-like confinement can store
heat in finite amounts.

Measuring TB instead of T
For classical systems, the equipartition theorem (equation (8))
implies that an isolated classical gas thermometer shows, strictly
speaking, the Gibbs temperature T = TG, not TB. When brought
into (weak) thermal contact with an otherwise isolated system, a
gas thermometer indicates the absolute temperature T of the com-
pound system. In the quantumcase, theGibbs temperatureT can be
determined with the help of a bosonic oscillator that is prepared in
the ground state and then weakly coupled to the quantum system of
interest, because (kBT )−1 is proportional to the probability that the
oscillator has remained in the ground state after some equilibration
period (Methods). Thus, the Gibbs entropy provides not only the
consistent thermostatistical description of isolated systems but also
a sound practical basis for classical and quantum thermometers.

It remains to clarify why previous experiments5,7 measured
TB and not the absolute temperature T . The authors of ref. 7,
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for example, estimate ‘temperature’ by fitting a quasi-exponential
Bose–Einstein function to their experimentally obtained one-
particle energy distributions10. Their system contains N � 1
particles with Hamiltonian HN and DOS ωN . The formally exact
microcanonical one-particle density operator reads

ρ1=TrN−1[ρN ] =
TrN−1[δ(E−HN )]

ωN
(12)

To obtain an exponential (canonical) fitting formula, as used
in the experiments, one first has to rewrite ρ1 in the equiva-
lent form ρ1= exp[lnρ1]. Applying a standard steepest descent
approximation13,19 to the logarithm and assuming discrete one-
particle levels E`, one finds for the relative occupancy p` of one-
particle level E` the canonical form

p`'
e−E`/(kBTB)

Z
, Z =

∑
`

e−E`/(kBTB) (13)

The key observation here is that the exponential approxima-
tion (equation (13)) features TB and not the absolute ther-
modynamic Gibbs temperature T = TG. This becomes obvi-
ous by writing equation (12) for a given one-particle energy
E` as p` = ωN−1(E − E`)/ωN (E) = exp[lnωN−1(E − E`)]/ωN (E)
and expanding lnωN−1(E − E`) for small E`, which gives p` ∝
exp[−E`/(kBTB,N−1)], where kBTB,N−1 ≡ ωN−1(E)/ω′N−1(E), in
agreement with equation (2). That is, TB in equation (13) is actually
the Boltzmann temperature of the (N−1)-particle system.

Hence, by fitting the one-particle distribution, one determines
the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T =TG is always non-negative.
The formal definitions ofTG andTB imply the exact general relation
(Supplementary Information)

TB=
TG

1−kB/C
(14)

where C = (∂TG/∂E)−1 is the total thermodynamic heat capacity
associated with T =TG. As evident from equation (14), differences
between TG and TB become relevant only if |C | is close to or smaller
than kB; in particular, TB is negative if 0<C < kB as realized in the
population-inverted regime (Supplementary Information).

Quantum systems with a bounded spectrum
That the difference betweenTG andTB is negligible for conventional
macroscopic systems13,19 may explain why they are rarely distin-
guished in most modern textbooks apart from a few exceptions12,19.
However, for quantum systemswith a bounded energy spectrum, SG
and SB are generally very different (Fig. 1), and a careful distinction
between TG and TB becomes necessary. To demonstrate this, we
consider a generic quantummodel relevant for the correct interpre-
tation of the experiments by Purcell and Pound5 and Braun et al.7
(see Supplementary Information for additional examples). The
model consists of N weakly interacting bosonic oscillators or
spins with Hamiltonian

HN '

N∑
n=1

hn

Each oscillator can occupy non-degenerate single-particle energy
levels E`n = ε`n with spacing ε and `n = 0,1 ... ,L. Assuming
indistinguishable bosons, permissible N -particle states can be
labelled by 3 = (`1, ... , `N ), where 0 ≤ `1 ≤ `2 ... ≤ `N ≤ L.
The associated energy eigenvalues E3 = ε(`1 + ... + `N ) are
bounded by 0 ≤ E3 ≤ E+ = εLN . The DOS ωN (E) = TrN [δ(E −
HN )] counts the degeneracy of the eigenvalues E and equals
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Figure 1 | Non-negativity of the absolute temperature in quantum
systems with a bounded spectrum. Thermodynamic functions for N weakly
coupled bosonic oscillators with (L+ 1) single-particle levels E`= `ε,
`=0,...,L, are shown for N= L= 10, corresponding to 184,756 states in
the energy band [E−,E+] = [0,LNε]. Open circles show exact numerical
data; lines represent analytical results based on the Gaussian
approximation of the DOS ω. The thermodynamic Gibbs entropy
S= SG= kB lnΩ grows monotonically with the total energy E, whereas the
Boltzmann (or surface) entropy SB= kB ln(εω) does not. Accordingly, the
absolute temperature T= TG remains positive, whereas the Boltzmann
temperature TB, as measured in ref. 7, exhibits a singularity at E∗= εNL/2.
Note that, although TG increases rapidly for E> E∗/2, it remains finite
because ω(E)>0. For N→∞, TG approaches the positive branch of TB

(Supplementary Information). Insets: exact relative occupancies p` (open
circles) of one-particle energy levels are shown for two different values of
the total energy. They agree qualitatively with those in Figs 1A and 3 of
ref. 7, and can be approximately reproduced by an exponential distribution
(filled circles) with parameter TB, see equation (13). Quantitative
deviations are due to limited sample size (N,L) in the simulations and use
of the Gaussian approximation for TB in the analytical calculations.

the number of integer partitions25 of z = E/ε into N addends
`n ≤ L. For N ,L � 1, the DOS can be approximated by a
continuous Gaussian,

ω(E)=ω∗exp[−(E−E∗)2/σ 2
]

The degeneracy attains its maximum ω∗ at the centre E∗= E+/2 of
the energy band (Fig. 1). The integrated DOS reads

Ω(E) = TrN [Θ(E−HN )]

' 1+
∫ E

0
ω(E ′) dE ′

= 1+
ω∗
√
πσ

2

[
erf
(
E−E∗
σ

)
+erf

(
E∗
σ

)]
where the parameters σ and ω∗ are determined by the
boundary condition ω(0) = 1/ε and the total number25 of
possible N -particle states Ω(E+) = (N + L)!/(N !L!). From
this, we find that

kBTB=
σ 2

E+−2E

diverges and changes sign as E crosses E∗ = E+/2, whereas the
absolute temperature T = TG(E)= k−1B Ω/ω grows monotonically
but remains finite for finite particle number (Fig. 1). In a quan-
tum system with a bounded spectrum as illustrated in Fig. 1,
the heat capacity C decreases rapidly towards kB as the energy
approaches E∗ = E+/2, and C does not scale homogeneously
with system size anymore as E → E+ owing to combinato-
rial constraints on the number of available states (Supplemen-
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tary Information). Such constraints lead to a strong effective
coupling between the spin degrees of freedom, thereby invalidating
basic assumptions in the derivation of canonical distributions,
such as equation (13).

In summary, for systems with a bounded spectrum, the effective
Boltzmann temperature TB differs not only quantitatively but
also qualitatively from the actual thermodynamic temperature
T =TG> 0. Unfortunately, the measurement conventions adopted
by Braun et al.7, and similarly those by Purcell and Pound5, are
designed to measure TB instead of TG.

Carnot efficiencies > 1 ?
The above arguments show that the Boltzmann entropy SB is
not a consistent thermodynamic entropy, neither for classical nor
for quantum systems, whereas the Gibbs entropy SG provides
a consistent thermodynamic formalism in the low-energy limit
(small quantum systems), in the high-energy limit (classical
systems) and in between. Regrettably, SB has become so widely
accepted nowadays that, even when its application to exotic
states of matter7 leads to dubious claims, these are rarely
questioned. One example are speculations2,4,7 that population-
inverted systems can drive Carnot machines with efficiency>1. To
evaluate such statements, recall that a Carnot cycle, by definition,
consists of four successive steps: isothermal expansion; isentropic
expansion; isothermal compression; isentropic compression. The
two isothermal steps require a hot and cold bath with temperatures
TH and TC, respectively, and the two isentropic steps can
be thought of as place-holders for other work-like parameter
variations (changes of external magnetic fields, and so on). The
associated Carnot efficiency

η= 1−
TC

TH
(15)

owes its popularity to the fact that it presents an upper bound for
other heat engines19. To realize values η> 1, one requires either TC

or TH to be negative. At least formally, this seems to be achievable
by considering systems as in Fig. 1 and naively inserting positive and
negative Boltzmann temperature valuesTB ≷0 into equation (15).

Speculations2,4,7 of this type are unsubstantiated for several
reasons. First, TB is not a consistent thermodynamic temperature,
and, if at all, one should use the absolute temperature T =TG>0 in
equation (15), which immediately forbids η> 1. Second, to change
back and forth between population-inverted states with TB < 0
and non-inverted states with TB > 0, work must be performed
non-adiabatically26, for example, by rapidly switching a magnetic
field. As the thermodynamic entropy is not conserved during
such switching processes, the resulting cycle is not of the Carnot
type anymore and requires careful energy balance calculations3.
In particular, such an analysis has to account for the peculiar fact
that, when the heat engine is capable of undergoing population
inversion, both a hot and cold bath may inject heat into the system.
Properly defined efficiencies of thermodynamic cycles that involve
systemswith lower and upper energy bounds are, in general, not just
simple functions ofTG orTB. Naive application of equation (15) can
be severely misleading in those cases.

On a final note, groundbreaking experiments such as those by
Purcell and Pound5 and Braun et al.7 are essential for verifying the
conceptual foundations of thermodynamics and thermostatistics.
Such studies disclose previously unexplored regimes, thereby
enabling us to test and, where necessary, expand theoretical
concepts that will allow us to make predictions and are essential
for the development of new technologies. However, the correct
interpretation of data and the consistent formulation of heat
and work exchange15 under extreme physical conditions (for
example, at ultracold or ultrahot27 temperatures, or on atomic or
astronomical scales) require special care when it comes to applying

the definitions and conventions that constitute a specific theoretical
framework. When interpreted within a consistent thermostatistical
theory, as developed by Gibbs14 more than a century ago, neither
the work of Purcell and Pound5 nor recent experiments7 provide
evidence for negative absolute temperatures. Unfortunately, this
alsomeans that cold atomgases are less likely tomimic dark energy.

Methods
Minimal quantum thermometer. A simple quantum thermometer for measuring
the thermodynamic Gibbs temperature T =TG can be realized with a heavy atom
in a one-dimensional harmonic trap. The measurement protocol is as follows:
before coupling thermometer and system, one must prepare the isolated system in
a state with well-defined energy E = ES and the thermometer oscillator with small
angular frequency ν in the ground state ET= h̄ν/2. After coupling the thermometer
to the system, the total energy remains conserved, but redistribution of energy
may take place. A measurement of the thermometer energy after a sufficiently long
equilibration period will produce an oscillator eigenvalue E ′T= h̄ν(n′+1/2), where
n′ ∈{0,...,b(E−E0)/(h̄ν)c}, with E0 denoting the system’s ground state and bxc the
integer part. If the total energy remains conserved and the thermometer oscillator
is non-degenerate, the probability P[E ′T|E] of measuring a specific oscillator energy
E ′T is equal to the microcanonical probability of finding the system in a state
E ′S = E− (E ′T−ET)≤ E :

P[E ′T|E] =
g (E+ET−E ′T)

Ω(E)

where g (E ′S) is the degeneracy of the level E
′

S of the system, and

Ω(E)=
∑
E ′S≤E

g (E ′S)

Assuming that the energy levels lie sufficiently dense (ν→ 0) we can approximate
the discrete probabilities P[E ′T|E]'p(E ′T|E)dE

′

T by the probability density

p(E ′T|E)=
ω(E+ET−E ′T)

Ω(E)

This distribution can be obtained by repeating the experiment many times, and a
simple estimator for the (inverse) absolute temperatureT >0 is (equation (3))

1
kBT
=
ω(E)
Ω(E)

= p(ET|E) (16)

In practice, one would measure p(E ′T|E) for E
′

T > ET = h̄ν/2 and extrapolate to
E ′T= ET. The thermometer equation (16) is applicable to systems with and without
population inversion. The precision of this minimal thermometer is set by the
oscillator frequency ν and the number of measurements.
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